Translator

Wednesday, 16 January 2019

Bauxite mining remediation

Should this be of interest to Malaysian federal and Kuantan state govt. agencies. But does anyone care about soil and land restoration in Kuantan?

Aged biochar alters nitrogen pathways in bauxite-processing residue sand: Environmental impact and biogeochemical mechanisms

Abstract

"Low nitrogen (N) content and retention in bauxite-processing residue sand (BRS) disposal areas pose a great challenge to the establishment of sustainable vegetation cover in this highly alkaline environment. The budget and fate of applied N in BRS and its potential environmental impacts are largely unknown. We investigated the effect of combined application of biochars [aged acidic (AC) vs alkaline pine (PC)] and di-ammonium phosphate (DAP) fertiliser on ammonia (NH3) volatilisation, nitrous oxide (N2O) emission and N retention in a 116-day glasshouse study. The application of AC to BRS decreased pH (≈0.5 units) in BRS, while PC biochar increased pH (≈0.3 units). The application of AC reduced NH3 volatilisation by ca. 80%, while PC by ca. 25%. On the other hand, the AC treatment increased N2O emission by 5 folds. However, the N loss via N2O emission in the AC treatment only accounted for ca. 0.4% of applied N. The reduction in BRS pH and increased retention of mineral N due to the presence of oxygen-containing (phenolic and carboxylic) functional groups in AC may be responsible for reduced NH3 volatilisation and increased N2O emission. This study has highlighted the potential of biochar (particularly aged biochar) in improving N retention and minimising environmental impacts in highly alkaline environments."

 

Sunday, 6 January 2019

Rice straw biochar reduces N loss



 

 

 

 

 

 

Abstract

Ammonia (NH3) volatilization is a major loss of nitrogen fertilizer in paddy fields. The incorporation of straw or biochar has been considered to be the alternative options for soil improvement and agriculture sustainability. A field experiment was conducted to evaluate the potential role of rice straw and rice straw derived biochar in controlling NH3 volatilization according to the conventional nitrogen fertilizer level (urea, 270 kg N ha−1) during one rice (Oryza sativa L., cv. Xiushui134) growing season. Four treatments comprised rice straw at the rate of 8 t ha−1 (RS); rice straw derived biochar at the rate of 2.8 t ha−1 (RSBL); rice straw derived biochar at the rate of 22.5 t ha−1 (RSBH) and a control (CK). Compared to straw application, biochar incorporation reduced the cumulative NH3 volatilization (about 20%) from paddy fields significantly (p < 0.05), promoted rice yields and plant N aboveground as well as increased the abundance of ammoxidation amoA genes. In contrast with control, the ratios of NH3-N and total N input for RS, RSBL and RSBH declined significantly 4.15%, 4.40% and 11.12%, respectively (p < 0.05). Reduced NH3 volatilization in RSB treatments were mainly attributed to the decrease of NH4+-N concentration in the surface water, which could resulted from the enhancement of rice growth and the promotion of ammonia oxidation in soil. The increase of soil pH and soil CEC with biochar amendment played an important role on nitrogen retention and nitrogen cycle in soil. These results indicated that the incorporation of rice straw derived biochar instead of rice straw could be a promising approach to control NH3 volatilization and improve rice yield.

Biochar enhances animal growth

Effect of biochar on growth performance of local “Yellow” cattle fed ensiled cassava roots, fresh brewers’ grains and rice straw

Bounthavy Vongkhamchanh, T R Preston[1], R A Leng[2], Le Van An[3] and Duong Thanh Hai[3]

Faculty of Agriculture and Forestry, Champasack University, Champasak, Lao PDR vongkhamchanhd@yahoo.com
1 Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV), Carrera 25 No 6-62 Cali, Colombia
2 University of New England, Armidale NSW, Australia
3 Faculty of Agriculture and Forestry, Hue University, Vietnam

Abstract

In a 56-day experiment with 6 local Yellow cattle fed ensiled cassava root-urea, brewers’ grains and rice straw, there were indications (p=0.08) that after an initial 4-week adaptation to the diet, the cattle were growing faster when 1% of biochar (derived from rice husk) was incorporated in the diet.

Friday, 4 January 2019

Apologies to all who have posted comments

I've just discovered 57 comments awaiting moderation!
I did not have blogger configured properly (to get notice of a comment).
Some comments dated back to 2016!
Fixed now.
Humble apologies from the hopeless editor.

Friday, 28 December 2018

Wednesday, 12 December 2018

Important biochar thesis from Nepal, Co/ Norway

I highly recommend reading at least the 4-page Summary to Naba's thesis. Its well written and findings look very important for Nepal and tropical agriculture in general.
You can link to the full document with a click on the cover page image below...

http://scholar.google.com.my/scholar_url?url=https://brage.bibsys.no/xmlui/bitstream/handle/11250/2576435/98517%2520NMBU%2520printed%2520thesis-Pandit.pdf%3Fsequence%3D1&hl=en&sa=X&d=4768769069505793267&scisig=AAGBfm1x18LSZyPkjLAYjxV_-xBw4nzUIA&nossl=1&oi=scholaralrt&hist=19qXGPoAAAAJ:2542305227971030937:AAGBfm0-aYGRoZDaO-UD3_A8cKnhz52mSA

Tuesday, 11 December 2018

Carbo-Fertil project and IBI biochar study tour to Austria June 2018

Biochar from food waste

I have a few Qs here...
  • where does food waste best fit in a waste hierarchy? does it have better utility as animal feed or in a localised BSF industry
  • what sort of H&MB numbers are going to work at scale, with all that water to remove? is hydrothermal carbonisation a better path for this type of waste stream
  • recovering P from our industrial food and sewage systems is important... is biochar production going to become a key player?

Properties of Biochar from Anaerobically Digested Food Waste and Its Potential Use in Phosphorus Recovery and Soil Amendment

1School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
2Shanghai Liming Resources Reuse Co. Ltd., Shanghai 201209, China
*Author to whom correspondence should be addressed.
Received: 14 November 2018 / Accepted: 5 December 2018 / Published: 10 December 2018

Abstract

The disposal of a large amount of biogas residue from anaerobically digested food waste is a burden for biogas production. The aim of this work was to investigate biogas residue as a potential feedstock, by preparing biochar at a broad pyrolysis temperature range of 400–900 °C. The properties required for phosphorus recovery and soil amendment application were evaluated. Biogas residue collected from an urban food waste treatment plant was pyrolyzed in a laboratory scale reactor. It was found that by increasing the pyrolysis temperature, the yield of biochar decreased and the pH, electrical conductivity and Brunauer–Emmett–Teller surface area increased. The amount of phosphorus adsorbed onto the biogas residue-derived biochar (BRB) at 900 °C was larger than that of other kinds of biochar. The kinetics of phosphorus (P) adsorption on BRB could be described by the pseudo-second-order equation. The pot experiments showed that the resulting biochar is beneficial for the growth of cabbage. Overall, turning solid residue from the anaerobic digestion of food waste for biogas production into biochar shows good prospects as a means of solving the disposal problem, while creating new markets for food waste biogas residue.

Monday, 10 December 2018

Friday, 30 November 2018

Beyond the Trough - Thailand


"Lots of people expressed interest in the post-trough, post-Kontiki, tench solution to making char in the field without water. Here's a really simple, two minute video shot using our original test trench. In a few months when the corn harvest is in, I'll shoot a more real one up in the mountains. For now, this will have to serve. It is not, as you will see, rocket science, and as long as you dig the trench during the rainy season, there's not much work involved."
Dr Micheal Shafer

Check out the "flame cap' tag for other contributions...

RHC-composting study from Malaysia

Monday, 12 November 2018

TLUD street kitchen - Vietnam


From: Paul Olivier
Date: Mon, 12 Nov 2018 at 17:26
Subject: street kitchens in Vietnam

A street kitchen in Vietnam is generally a grave threat to human health and the environment. A street kitchen typically burns coal, charcoal or firewood. The lighting of these solid fuels usually emits a cloud of black smoke. When these solids fuels are combusted, high levels of benzene, particulate matter and CO stream forth in all directions. But perhaps, still worse, are the highly carcinogenic cooking oil fuels.

Near the University of Dalat, there are several street kitchens close to one another. They emit large quantities of cooking oil fumes. These cooking oil fumes combine with particulate matter and nitrogen compounds (emitted by sewage lines), and when these pollutants enter the human lung, they stick there and do not come out. People get sick, and people die.

Here you see jpegs of a 150 gasifier equipped with a 3-sided wind shield, a 40-liter biochar filter, a hood and a fan.
The 150 gasifier emits levels of benzene, particulate matter and CO well within the norms specified by the World Health Organization. When cooking oil fumes are pulled through the biochar filter by means of a small fan above the round hood, they stick to the biochar and not to the human lung.

The solid fuels typically used by street kitchens are costly. But with a gasifier, one has high-grade heat at a profit, since the biochar pellets produced in the gasifier have a greater value than the raw pellets from which they are derived. In other words, one has high-grade heat at a profit.

When biochar is produced in a gasifier, dirty and highly-polluting biochar kilns are not needed. In Dalat I have seen biochar kilns that emit, day after day, huge clouds of smoke.

Gasifiers can be powered almost entirely by agricultural waste biomass, such as rice hulls and rice straw. To the extent that such waste biomass would be pelleted and used as gasifier fuel, the useless burning of this waste would not take place.
--
Paul A. Olivier PhD
27/2bis Phu Dong Thien Vuong
Dalat, Vietnam

Louisiana telephone: 1-337-447-4124 (rings Vietnam)
Mobile: 090-694-1573 (in Vietnam)
Skype address: Xpolivier
http://epwt.vn/en/home/

Friday, 9 November 2018

IBI Webinar on B4SS (Indonesia, Vietnam)

https://biochar-international.org/webinars-list/

Upcoming Webinars

IBI Educational Webinar Series: Biochar for Sustainable Soils (B4SS)

11/29/2018Presented by Ruy Anaya de la Rosa
Biochar projects spanning multiple countries are still relatively few and far between. There is much to learn from these types of multinational projects. IBI has invited Ruy Anaya de la Rosa, the Project Director from the recently concluded Biochar for Sustainable Soils (B4SS) to discuss lessons learned, challenges and best practices from his experiences collaborating biochar projects teams in China, Ethiopia, Indonesia, Kenya, Peru and Vietnam.
B4SS was funded by the Global Environment Facility (GEF) under the Land Degradation Focal Area in the GEF-5 Strategies.  The objective of the B4SS was to demonstrate and promote the adoption of sustainable land management practices involving the use of innovative organic amendments, based on biochar, that improve the capture and efficient use of nutrients, and enhance productivity, improve climate resilience, support rural livelihoods, and contribute to watershed management. A key goal was to promote the diffusion and successful adoption of biochar techniques among B4SS partner countries and beyond.
The project was focused on collating knowledge generated through the implementation of the targeted biochar demonstration projects. Awareness and improved understanding amongst smallholders, including women’s groups, and resource managers about the most effective biochar formulations and application rates to improve soil functions and reduce land degradation, will be created and shared among stakeholders. This integrated global approach to advance the knowledge on the use of biochar for SLM also conveyed other messages to farming communities mainly interested in soil improvement.

Cost?
Free to IBI Members or $40 for non-members. (Not a member yet? Click here to join and get webinars free for a year, and lots of other benefits!)  Registration includes access to the slides and a recording of the webinar.

To Register:
Non-members may register here for a $40 fee.  If you are a member and are expecting to access the webinar for free, please log in first and return to this page for the members registration link and code to appear. 

For more information:
For more information or if you have any questions about registration please email Caroline Peat at cpeat@ttcorp.com.  Want to become an IBI member and have access to all recorded webinars?  Visit our membership page to help support IBI.

Saturday, 3 November 2018

EFB biochar, composting in Indonesia




ABSTRACT:
The efficiency of phosphorus uptake by plants in an Ultisol soil is very low because most of soil phosphorus is precipitated by Al and Fe. Oil palm empty fruit bunches can be used as basic materials of biochar and compost, and as sources of isolates of phosphate solubilizing fungi. This study was aimed to elucidate the effect of application of phosphate solubilizing fungi with biochar and compost generated from oil palm empty fruit bunches on growth and yield of maize an Ultisol of Central Kalimantan. This study consisted of two experiments. The first experiment was inoculation of four isolates of phosphate solubilizing fungi isolated from of oil palm empty fruit bunches, i.e. Acremonium (TB1), Aspergillus (TM7), Hymenella (TM1) and Neosartorya (TM8) to 'biocom' media (mixture of biochar and compost generated from oil palm empty fruit bunches) to obtain phosphate solubilizing fungi that can adapt to the media. In the second experiment, the best results in the first experiment were applied to an Ultisol soil planted with maize. The results showed that isolates that were best adapted to biocom media were Aspergillus-TB7 with 60:40 proportion (60% biochar + 40% compost) and Neosartorya-TM8 with 70:30 proportions (60% biochar + 40% compost). The application of the first experiment results to the second experiment showed that the application of biocom plus Neosartorya-TM8 (BTM) on an Ultisol soil significantly improved growth and yield of maize, as well as phosphorus uptake and efficiency of phosphorus uptake by maize.
CORRESPONDING AUTHOR:
Eko Handayanto   
Research Centre for Management of Degraded and Mining Lands, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia